Using just one kind of nanoparticle (gold) the researchers built two common but very different crystalline structures by merely changing one thing -- the strands of synthesized DNA attached to the tiny gold spheres. A different DNA sequence in the strand resulted in the formation of a different crystal.
The technique, to be published in the journal Nature, and reflecting more than a decade of work, is a major and fundamental step toward building functional "designer" materials using programmable self-assembly. This "bottom-up" approach will allow scientists to take inorganic materials and build structures with specific properties for a given application, such as therapeutics, biodiagnostics, optics, electronics or catalysis.
By changing the type of DNA on the surface of the particles, the Northwestern team can get the particles to arrange differently in space. The structures that finally form are the ones that maximize DNA hybridization. DNA is the stabilizing force, the glue that holds the structure together. "These structures are a new form of matter," said Mirkin, "that would be difficult, if not impossible, to make any other way."
He likens the process to building a house. Starting with basic materials such as bricks, wood, siding, stone and shingles, a construction team can build many different types of houses out of the same building blocks. In the Northwestern work, the DNA controls where the building blocks (the gold nanoparticles) are positioned in the final crystal structure, arranging the particles in a functional way. The DNA does all the heavy lifting so the researchers don't have to.
"Once you get good at this you can build anything you want," said Mirkin, director of Northwestern's International Institute for Nanotechnology.
"The rules that govern self-assembly are not known, however," said Schatz, "and determining how to combine nanoparticles into interesting structures is one of the big challenges of the field."
Each gold nanoparticle has multiple strands of DNA attached to its surface so the nanoparticle is binding in many directions, resulting in a three-dimensional structure -- a crystal. One sequence of linker DNA, programmed by the researchers, results in one type of crystal structure while a different sequence of linker DNA results in a different structure.
Full Article
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment