The history of computing spans thousands of years - from the primitive notched bones found in Africa, to the invention of abacus in 2400 BC, to Charles Babbage’s Difference Engine in 1883, to the rise of the popularity of Personal Computers (PCs) in the 1970s. For the most part, this timeline is marked by devices that bear little or no resemblance to present-day machines both in form and capabilities.
We’ve had many posts on Neatorama about the newest and greatest in computers and technology. But for this article, let’s go back - way back - and take a look at the wonderful world of early computing.
Lebombo and Ishango Bones
The Lebombo bone is a 35,000-year-old baboon fibula discovered in a cave in the Lebombo mountains in Swaziland. The bone has a series of 29 notches that were deliberately cut to help ancient bushmen calculate numbers and perhaps also measure the passage of time. It is considered the oldest known mathematical artifact.
he unusual groupings of the notches on the Ishango bone (see above), discovered in what was then the Belgian Congo, suggested that it was some sort of a stone age calculation tool. The 20,000-year-old bone revealed that early civilization had mastered arithmetic series and even the concept of prime numbers.
Abacus
Today, abacus is mostly synonymous with the Chinese suanpan version, but in actuality it had been used in Babylon as early as 2400 BC. The abacus was also found in ancient Egypt, Greece, and Rome. Even the Aztecs had their own version.
The Roman pocket abacus was the first portable calculating device, presumably invented to help tax collectors do math while on the go!
Antikythera Mechanism
In 1900, a Greek sponge diver spotted a shipwreck off the coast of the tiny island of Antikythera. Little did he know that amongst the jewelry and statues recovered from the wreck, the most precious item would be a lump of green rock with gears sticking out of it.
The "rock" turned out to be the earliest example of analog computer: an intricate mechanism with more than 30 gears and writings that scientists thought was used to calculate the motion of the sun and the moon against a background of fixed stars.
The Antikythera Mechanism, as the device was named, was dated from around 100 BC. It would take about another 1,000 years for the appearance of similar levels of technical sophistication in the West. Who built the machine and why the technology was lost remained a mystery.
Napier’s Bones
In 1614, Scottish mathematician John Napier proposed a radical idea called logarithm that made calculations by hand much easier and quicker. (That wasn’t his only contribution to math: Napier was a big proponent of the decimal point, which wasn’t much in use until he came around.)
He also created a device, called Napier’s bones, that let people perform multiplications by doing a series of additions (which was a lot easier to do) and divisions as a series of subtraction. It could even do square and cube roots! This invention may seem trivial to you and me, but it
was a significant advancement in computing at the time.
Wilhelm Schickard’s Calculating Clock
In 1623, Wilhelm Schickard of the University of Tübingen, Württemberg (now part of Germany), invented the first mechanical calculator. Schickard’s contemporaries called the machine the Speeding Clock or the Calculating Clock.
Schickard’s calculator, which was built 20 years before Blaise Pascal and Gottfried Leibniz’s machines, could add and subtract six-digit numbers (with a bell as an overflow alarm!). This invention was used by his friend, astronomer Johannes Kepler, to calculate astronomical tables, which was a big leap for astronomy at the time. For this, Wilhelm Schickard was considered by some to be the "Father of Computer Age."
Wilhelm Schickard died of the Bubonic Plague in 1635, thirteen years after inventing the world’s first mechanical calculator. The prototype and plans for the calculator was lost to history until the 20th century, when the machine’s design was discovered among Kepler’s papers.
In 1960, mathematician Bruno Von Freytag constructed a working model of Schickard Calculator from the plans. (Image: Institut für Astronomie und Astrophysik, Universität Tübingen)
Blaise Pascal’s Pascaline
The second mechanical calculator, called the Pascaline or the Arithmetique, was invented in 1645 by Blaise Pascal. Pascal started working on his calculator when he was just 19 years old, out of boredom. He created a device to help his father, a tax collector, to crunch numbers.
In 1649, Pascal received a Royal Privilege giving him the exclusive right to make and sell calculating machines in France. However, because of the complexity of his machine and its limitation (the Pascaline could only add and subtract, and frequently jammed), he managed to sell just a little over a dozen.
The basic mechanism of the Pascaline is a series of gears - when the first gear with ten teeth made one rotation (one to ten), it shifts a second gear until it rotated ten times (one hundred). The second gear shifted a third one (thousands) and so on. This mechanism is still in use today in car odometers, electricity meters and at the gas pumps.
Full Article
Saturday, January 26, 2008
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment