ss_blog_claim=a290fbfb2dabf576491bbfbeda3c15bc

Saturday, January 26, 2008

NANO Future

Could nanotechnology help squeeze more oil and gas out of the ground? That's the hope of a consortium of energy companies that is putting millions of dollars into the development of new micro- and nanosensor technologies.

The seven companies that make up the Advanced Energy Consortium (AEC), which includes Halliburton Energy Services, BP America, and ConocoPhilips, will put up $21 million in total to fund the research. The aim is to develop subsurface sensors that can be used to improve both the discovery and the recovery of hydrocarbons.

"It's been a long time coming," says Wade Adams, director of the Richard E. Smalley Institute for Nanoscale Science and Technology at Rice University, in Houston, a technical partner to the consortium. "It's the first time the energy companies have got together to fund this kind of research, so it really is a big deal," he says.

Currently, even with the most advanced recovery techniques, only about 40 percent of the oil and gas in reservoirs can be recovered. The hope is that by injecting novel sensors into these reservoirs, it will be possible to more accurately map them in 3-D, increase the amount of fuel extracted, and minimize the environmental impact.

The financial investment--equivalent to $1 million per year from each company for three years--is "a very good sign," says Kris Pister, a professor of electrical engineering and computer science at the University of California, Berkeley, who has spent several years developing distributed sensors known as smart dust. It means that the energy companies now understand the potential of small-scale distributed-sensors technologies, he says.

"There is good reason to suspect that this technology could help," says Pister. Distributed wireless sensor technologies are becoming increasingly sophisticated, and now even have their own wireless standard: the highway addressable remote transducer, or HART.

Right now, the only way to find these reservoirs and gauge their precise size and capacity is through seismic means, or by simply drilling down. "But you don't get much information," says Adams. Surface and down-hole seismic techniques have limited resolution, while drilling can only take readings for the two-foot region surrounding the drill bore, he says.

Full Article

No comments:

 
ss_blog_claim=a290fbfb2dabf576491bbfbeda3c15bc